Supplementary Figures

Figure S1. Phenotypes of *rad1* alleles in mating-type switching and nucleotide excision repair. **A.** High (HC; 2μ) and low (LC; *ARS CEN*) copy plasmids encoding *RAD1* were tested for their ability to complement a *rad1* Δ in the double non-homology mating type switch assay (1). EAY1115 (*rad1* Δ) was transformed with the *RAD1* plasmids and corresponding empty vectors. DSBR activity was compared to that of EAY1042 (*RAD1*). Percent survival (black bars) indicates the number of cells that survived induction of a DSB. Percent switching (white bars) indicates the percentage of survivors that switched their mating-type from *MATa* to *MATa*. Data represents the mean ± SEM of at least three independent experiments with each isolate. **B.** The ten *rad1* alleles were tested for function in DSBR in EAY1115, as described in **A. C.** The ten *rad1* alleles were tested for function in NER. Serial dilutions of a saturated overnight were plated and exposed to increasing doses of UV irradiation.

Figure S2. Interactions between rad1 complexes and Saw1 (A, B) or Msh2-Msh3 (C, D) by Far Western analysis. A. 6xHis-Saw1 was spotted on a nitrocellulose membrane (0, 2, 4 pmols shown). The membrane was incubated with His-Rad1-Rad10. α -Rad10 antibody was used to probe the membrane and secondary antibody was used to detect α Rad10. As a negative control, the same amounts of BSA were spotted and then incubated with His-Rad1-Rad10, His-rad1R203A K205A-Rad10 or His-radR218A-Rad10, followed by α -Rad10 antibody. **B.** Quantification of His-Rad1-Rad10 (black circles), His-rad1R203A K205A-Rad10 (red squares) and His-rad1R218A-Rad10 (teal triangles) binding to 6xHis-Saw1 was done in Image Lab (Bio Rad). **C.** Msh2-Msh3 was spotted on a nitrocellulose membrane (0-2 pmols). The membrane was incubated with His-Rad1-Rad10, His-rad1R203A K205A-Rad10 or His-rad1R218A-Rad10. The membrane was then probed with α -Rad10, then secondary antibody and exposed by ChemiDoc (Bio Rad). **D.** Quantification of His-rad1R218A-Rad10 (teal triangles) binding to Msh2-Msh3 was performed in Image Lab (Bio Rad). Standard curves of His-Rad1-Rad10 (red squares) and His-rad1R203A K205A-Rad10 or His-rad1R203A K205A-Rad10 (red squares) and His-rad1R218A-Rad10 (black circles), His-rad1R203A K205A-Rad10 or His-rad1R203A K205A-Rad10 or His-rad1R203A K205A-Rad10 or His-rad1R203A K205A-Rad10 or His-rad1R203A K205A-Rad10 (red squares) and His-rad1R218A-Rad10 (black circles), His-rad1R203A K205A-Rad10 (red squares) and His-rad1R218A-Rad10 (teal triangles) binding to Msh2-Msh3 was performed in Image Lab (Bio Rad). Standard curves of His-Rad1-

Rad10, His-rad1R203A K205A-Rad10 and His-rad1R218A-Rad10 were also spotted and imaged in parallel with the 6xHis-Saw1 and Msh2-Msh3 membranes. The slopes of the standard curve were used to determine the pmols of His-Rad1-Rad10, His-rad1R203A K205A-Rad10 and His-rad1R218A-Rad10 binding. Data represents the mean ± SEM of at least four independent experiments with at least two independent protein preparations.

Figure S3. Purification of His-Rad1-Rad10/Saw1, His-rad1R203A K205A-Rad10/Saw1 and His-rad1R218A-Rad10/Saw1 from Cobalt column. A. The load, flow-through and elution fractions from the Cobalt column of His-Rad1-Rad10/Saw1 (top), His-rad1R203A K205A-Rad10/Saw1 (middle) and His-rad1R218A-Rad10/Saw1 (bottom) were analyzed on an SDS-page (12%) gel. The elution lane is labeled GF load to indicate the gel filtration load. The His-Rad1, His-rad1R203A K205A, His-rad1R218A, Rad10, and Saw1 bands are indicated with arrows. The gels shown are representative of two independent experiments. **B.** The relative amounts of His-Rad1, His-rad1R203A K205A, His-rad1R203A K205A, His-rad1R218A, Rad10, and Saw1 in each GF load were quantified from the gels in **A**, using Image Lab (Bio Rad). Within a lane, the signals for Rad1 (or rad1 mutant), Rad10 and Saw1 were summed. The proportion of that represented by each protein is the number shown in the Table.

Figure S4. *in vitro b*ehavior of His-Rad1-Rad10, His-rad1R203A K205A-Rad10 and Hisrad1R218A-Rad10 complexes. A. Analysis of His-Rad1/rad1R203A K205A-Rad10 gel filtration fractions following purification over a Cobalt column, as in the complex purification shown in **Fig. 7**. Fraction numbers start with #1 representing the highest molecular weight fractions following the void. Fractions were analyzed for His-Rad1, His-rad1R203A K205A (Coomassie stain), His-rad1R218A (silver stain) and Rad10 (Western). **B.** Analysis of partially purified His-Rad1-Rad10 and His-rad1R218A-Rad10 following centrifugation. Protein was centrifuged at 16,000*xg* for 10 minutes to detect protein aggregation. An aliquot of each protein was sampled prior to centrifugation (Pre). An equivalent sample was sampled following centrifugation (Post). The samples were separated by gel electrophoresis and stained with Coomassie. Quantification was performed in ImageLab (Bio-Rad).

Figure S5. UV sensitivity of strains with integrated *rad1R218A.* UV sensitivity of strains with integrated *rad1::HA* alleles, used for short repeat SSA assays in **Fig. 10** was tested. Data represents the mean \pm SEM of at least three independent experiments with each of at least two independent isolates.

Figure S6. Saw1 protein levels *in vivo.* SSA strains with short repeats encoding *RAD1-3HA*, *rad1D825A-3HA*, *rad1* Δ and *rad1R218A-3HA* were transformed with a 2 μ (high copy) plasmid encoding *SAW1*. Cell lysates were prepared from strains transformed with either the *SAW1* plasmid or the corresponding empty vector that had been grown to mid-log phase. Western Blots were performed on whole cell lysates using α -Saw1 as a probe. The Saw1 band is indicated with arrows.

Figure S7. Effect of Rad1 protein partners Rad14 and Saw1 on SSA and UV sensitivity.

A. UV sensitivity of cells overexpressing *SAW1* from a high copy (2 μ) plasmid under control of the endogenous *SAW1* promoter was determined. **B.** SSA (short repeats) survival assays were performed in the presence and absence of *RAD14*, to determine whether SSA efficiency improved in *rad14* Δ cells.

Figure S8. Summary of *in vivo* and *in vitro* phenotypes of Rad1-Rad10 and mutant rad1 **complexes.** The rad1 mutants have distinct phenotypes in the different *in vivo* and *in vitro* assays performed in this work. * indicates data from Li et al, 2013.(2) ++ indicates wild-type levels of activity, *in vitro* or *in vivo*; +++ indicates increased activity relative to wild-type, + and +/- indicate decreasing activity levels relative to wild-type; - indicates not detectable activity; NT indicates not tested.

Table S1. Plasmids	used in	this	study	/
--------------------	---------	------	-------	---

Plasmid	Allele	Copy Number	Reference
pRS424	Empty Vector	2 µ	(3)
pRS425	Empty Vector	2 µ	(3)
pRS414	Empty Vector	ARS CEN	(4)
pJAS33	RAD1	ARS CEN	This study
pRD1	RAD1	2 µ	This study
pRD2	rad1R203A K205A	2 µ	This study
pRD3	rad1R218A	2 µ	This study
pRD4	rad1E251A	2 µ	This study
pRD5	rad1R259A K261A	2 µ	This study
pRD6	rad1R301A	2 µ	This study
pRD7	rad1K315A	2 µ	This study
pRD8	rad1E365A	2 µ	This study
pRD9	rad1R399A R402A	2 µ	This study
pRD10	rad1D444A	2 µ	This study
pRD11	rad1K454A R456A	2 µ	This study
pCY1	SAW1	2 µ	This study
pSP1	MSH3	2 µ	This study
pMMR8	MSH2	2 µ	(5)
pMMR20	MSH3	O/E (Gal)	(5)
pEAE247	msh3KKAA	O/E (Gal)	(6)
pJAS104	Empty Vector	O/E (Gal)	This study
pET28A-Saw1	SAW1	O/E (IPTG)	(2)
pJAS19	RAD10	O/E (IPTG)	This study
pJAS21	His-RAD1 RAD10	O/E (IPTG)	(2)
pMF1	His-rad1R203A K205A RAD10	O/E (IPTG)	This study
pMF2	His-rad1R218A RAD10	O/E (IPTG)	This study
pCY1	6xHis-SAW1	2 µ	This study

Table S2: Oligonucleotides used for site directed mutagenesis.

rad1 allele	Oligo name	Sequence
rad1 R203A/K205A	SO87 SO88	5'-CGCTGAGCATTGAAAAGGCAAGAGCGCTATATATTTCTGGCGG 5'-CCGCCAGAAATATATAGCGCTCTTGCCTTTTCAATGCTCAGCG
rad1R218A	SO89 SO90	5'-GAGCATTACTTCTGCAATTCTCATTGTGGATCTC 5'-GAGATCCACAATGAGAATTGCAGAAGTAATGCTC
rad1E251A	SO91 SO92	5'-gcagactcacttcgacataattcgaatgcatcgtttatattagag $5'$ -ctctaatataaacgatgcattcgaattatgtcgaagtgagtctgc
rad1R259A/K261A	SO93 SO94	5'-GAGATTTACGCGTCTGCAAATACTTGGGGGTTTTATTAAAGCC 5'-GGCTTTAATAAAACCCCCAAGTATTTGCAGACGCGTAAATCTC
rad1R301A	SO95 SO96	5'-gctatggccggcgttcagggtagaggtctc 5'-gagacctctaccctgaacgccggccatagc
rad1K315A	SO97 SO98	5'-CCTGTTTGAATGCCACTAATGCGACGTCACACAATAAAGTC 5'-GACTTTATTGTGTGACGTCGCATTAGTGGCATTCAAACAGG
rad1E365A	SO99 SO100	5'-CTGGACTGGTGGAATATGGCAAATGTCCTGG 5'-CCAGGACATTTGCCATATTCCACCAGTCCAG
rad1R399A/R402A	SO101 SO102	5'-CTGGTTAAGGATATAGCATTCCTAGCCCACCTTTTAAAGATGCTC $5'$ -GAGCATCTTTAAAAGGTGGGCTAGGAATGCTATATCCTTAACCAG
rad1D444A	SO103 SO104	5'-CCGTGGCTATTGGTCGCTGAGGCACAATTAG 5'-CTAATTGTGCCTCAGCGACCAATAGCCACGG
rad1K454A/R456A	SO105 SO106	5'-GGCACAATTAGTCATATCGTATGCGGCGAAAGCAATATTTTAC 5'-GTAAAATATTGCTTTCGCCGCATACGATATGACTAATTGTGCC

Table S3. Strains used in this study

Strains	Genotype	Plasmid	Reference
	Δho, HMLα MATa::KanMX hmrΔ::ADE1		
EAY1042	ade1-100 leu2-3 lys5 trp1::hisG ura3-52		(1)
	ade3::Gal::HO MSH2-HA4::LEU2		
JSY2785-87	EAY1042	pEA032	This study
JSY3564-66	EAY1042	pEA032	This study
JSY2866-68	EAY1042	pRD1	This study
JSY3567-69	EAY1042	pRD1	This study
JSY2782-84	EAY1042	pRD2	This study
JSY3570-72	EAY1042	pRD2	This study
JSY2869-71	EAY1042	pRD3	This study
JSY3573-75	EAY1042	pRD3	This study
	Δho, HMLα MATa::KanMX hmrΔ::ADE1		
EAY1115	ade1-100 leu2-3 lys5 trp1::hisG ura3-52		(1)
	ade3::Gal::HO MSH2-HA4::LEU2 rad1∆		
JSY251, 367	EAY1115	pEA032	This study
JSY252, 368	EAY1115	pRD1	This study
JSY253, 369	EAY1115	pRD2	This study
JSY254, 370	EAY1115	pRD3	This study
JSY255, 371	EAY1115	pRD4	This study
JSY256, 372	EAY1115	pRD5	This study
JSY257, 373	EAY1115	pRD6	This study
JSY258, 374	EAY1115	pRD7	This study
JSY259, 375	EAY1115	pRD8	This study
JSY260, 376	EAY1115	pRD9	This study
JSY261, 377	EAY1115	pRD10	This study
JSY262, 378	EAY1115	pRD11	This study
JSY4126, 4127	EAY1115	pEAO37	This study
JSY4128, 4129	EAY1115	pJAS33	This study
FY86	MATα ura3-52 leu2Δ1 his3Δ200		(7)
FY23	MATa ura3-52 trp1 Δ 63 leu2 Δ 1		(8)
JSY1540	FY23 + rad1Δ::KanMX		This study
JSY1617-19	JSY1540	pEA032	This study
JSY1620-22	JSY1540	pRD1	This study
JSY1913-15	JSY1540	pRD2	This study
JSY1916-18	JSY1540	pRD3	This study
JSY1919-21	JSY1540	pRD4	This study
JSY1922-24	JSY1540	pRD5	This study
JSY1925-27	JSY1540	pRD6	I his study
JSY1928-30	JSY1540	рКО7	I his study
JSY1931-33	JSY1540	pRD8	I his study
JSY1934-36	JSY1540	pRD9	I his study
JSY1937-39	JSY1540		I his study
JSY1940-42	JSY1540	рКU11	I his study

	mat::leu2::hisG hmr3 thr4 leu2 trp1		
EAY1141	THR4-ura3-A(205bp)-HOcs-URA3-A		(9)
	ade3::GAL10-HO::ŃAT		
JSY2876-78	EAY1141 rad1D825A-3HA::KanMX		(10)
JSY2885-87	FAY1141 rad1R218A-3HA··KanMX		This study
1972888-00	EAV11/1 rad1/.:KanMX		(10)
ISV2002-05	EAV1111 rod1 2UA:KanMV		(10)
JS12903-03	EATITHT Idu -SHA Admini		(IU) This stuck
JS13347-49		0.0.0.4	This study
JSY2945-47	EAY1141 rad1D825A-3HA::KanMX	pSP1	This study
JSY2948-50	EAY1141 rad1R218A-3HA::KanMX	pSP1	This study
JSY2957-59	EAY1141 rad1-3HA::KanMX	pSP1	This study
JSY2930-32	EAY1141 rad1D825A-3HA::KanMX	pEAO33	This study
JSY2933-35	EAY1141 rad1R218A-3HA::KanMX	pEAO33	This study
JSY2942-44	EAY1141 rad1-3HA::KanMX	pEAO33	This study
JSY3022-24	EAY1141 rad1D825A-3HA::KanMX	pCY1	This study
JSY3025-27	EAY1141 rad1R218A-3HA::KanMX	pCY1	This study
JSY3028-30	EAY1141 rad1Δ::KanMX	pCY1	This study
JSY3031-33	EAY1141 RAD1	pCY1	This study
JSY3034-36	EAY1141 rad1-3HA··KanMX	nCY1	This study
JSY3054-56	EAV1141 rad1D825A-3HA. KanMX	$p \in \Gamma$	This study
ISV3057-50	$E\Lambda V11/1$ rad $1D020A$ $3HA.:KanMX$	pEAO32	This study
16V2062 65		p = A O 32	This study
10/2000-02	EAV1141 rod1 2UA:KonMV		This study
JS13000-00	EATTIAT IAUT-SHA Nahiwix	pEAO32	This sludy
JSY 3049-51	EAY1141 <i>rad1-3HA::KanMX</i>		This study
		pEAE247	
JSY2960-62	EAY1141 rad1D825A-3HA::KanMX	pEAO32	This study
			,
JSY2963-65	EAY1141 rad1R218A-3HA::KanMX	pEAO32	This study
		pMMR20	· · · · ,
JSY2972-74	FAY1141 rad1-3HA…KanMX	pEAO32	This study
••••		pMMR20	The etady
JSY3037-39	FAY1141 rad1D825A-3HA…KanMX	pEAO32	This study
		pEAE247	The study
1973040-42	EAV1111 rad1R218A-3HA…KanMX	pEAO32	This study
0013040 42		pEAE247	This Study
1973060-21	$EAV11/1$ rad $1D825A_3HA$ Kan MX	pMMR8	This study
3313003-71	EATTIAT Tau Too23A-STIANatiiviX	pMMR20	This study
1672022 24	EAV1111 rod $1D210A$ $2UA$ ·· Kon MV	pMMR8	This study
JS130/2-/4	EATITAT IAUTRZ TOA-SHA KALIWA	pMMR20	This sludy
	EAN/11/11 red 21/Au/KarAAN	pMMR8	
JST3081-83	EATITATIAUT-SHANanivix	pMMR20	This study
		pCY1	This study
JSY3084-86	EAY1141 rad1D825A-3HA::KanMX	pMMR20	I his study
		pCY1	
JSY3087-89	EAY1141 <i>rad1R218A-3HA::KanMX</i>	pMMR20	This study
		pCY1	
JSY3096-98	EAY1141 <i>rad1-3HA::KanMX</i>	pMMR20	This study
JSY3117-19	FAY1141 rad1D825A-3HA…KanMX	nFAO32	This study
		PE//002	The study

JSY3120-22	EAY1141 rad1R218A-3HA::KanMX	pJAS104 pEAO32 pJAS104	This study
JSY3129-31	EAY1141 rad1-3HA::KanMX	pEAO32 pJAS104	This study
YMV80	ho∆ hml∆::ADE3 MATα∆::hisG hmr∆::ADE3 leu2-cs ade3::GAL::HO ade1 lys5 ura3-52	·	(11)
JSY2894-96 JSY3399-01	YMV80 <i>rad1R218A-3HA::KanMX</i> YMV80 msh2∆		This study This study

References

- Lyndaker, A.M., Goldfarb, T. and Alani, E. (2008) Mutants Defective in Rad1-Rad10-Slx4 Exhibit a Unique Pattern of Viability During Mating-Type Switching in Saccharomyces cerevisiae. *Genetics*, **179**, 1807-1821.
- Li, F., Dong, J., Eichmiller, R., Holland, C., Minca, E., Prakash, R., Sung, P., Yong Shim, E., Surtees, J.A. and Eun Lee, S. (2013) Role of Saw1 in Rad1/Rad10 complex assembly at recombination intermediates in budding yeast. *EMBO J*, **32**, 461-472.
- Christianson, T.W., Sikorski, R.S., Dante, M., Shero, J.H. and Hieter, P. (1992) Multifunctional yeast high-copy-number shuttle vectors. *Gene*, **110**, 119-122.
- Sikorski, R.S. and Hieter, P. (1989) A System of Shuttle Vectors and Yeast Host Strains Designed for Efficient Manipulation of DNA in Saccharomyces cerevisiae. *Genetics*, 122, 19-27.
- Habraken, Y., Sung, P., Prakash, L. and Prakash, S. (1996) Binding of insertion/deletion DNA mismatches by the heterodimer of yeast mismatch repair proteins MSH2 and MSH3. *Current Biology*, 6, 1185-1187.
- Lee, S.D., Surtees, J.A. and Alani, E. (2007) Saccharomyces cerevisiae MSH2-MSH3 and MSH2-MSH6 Complexes Display Distinct Requirements for DNA Binding Domain I in Mismatch Recognition. *Journal of Molecular Biology*, **366**, 53-66.
- Winston, F., Dollard, C. and SL, R.-H. (1995) Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. *Yeast*, **11**, 53-55.
- Madison, J.M. and Winston, F. (1997) Evidence that Spt3 functionally interacts with Mot1, TFIIA, and TATA-binding protein to confer promoter-specific transcriptional control in Saccharomyces cerevisiae. *Molecular and Cellular Biology*, **17**, 287-295.
- Goldfarb, T. and Alani, E. (2005) Distinct Roles for the Saccharomyces cerevisiae Mismatch Repair Proteins in Heteroduplex Rejection, Mismatch Repair and Nonhomologous Tail Removal. *Genetics*, **169**, 563-574.

- Li, F., Dong, J., Pan, X., Oum, J.-H., Boeke, J.D. and Lee, S.E. (2008) Microarray-Based Genetic Screen Defines SAW1, a Gene Required for Rad1/Rad10-Dependent Processing of Recombination Intermediates. *Molecular Cell*, **30**, 325-335.
- Vaze, M.B., Pellicioli, A., Lee, S.E., Ira, G., Liberi, G., Arbel-Eden, A., Foiani, M. and Haber, J.E. (2002) Recovery from Checkpoint-Mediated Arrest after Repair of a Double-Strand Break Requires Srs2 Helicase. *Molecular Cell*, **10**, 373-385.

C	0 J/m²	15 J/m²	45 J/m²
rad1∆ RAD1		●●●₩≮ .	•••
rad1R203A K205A rad1R218A rad1E251A rad1R259A K261A			● ◎ ④ Ai ; ● ● ● ● ④ ④ ・ ● ● ● 静 令 ・ ● ● ● 静 小
rad1R301A rad1K315A rad1E365A	● ● ● ⊕ ≮ ↓ ● ● ● ● ⊕ ≮ ↓	● ● ● ⊕ 5 · • ● ● ● ⊕ 5 · • ● ● ● ⊕ \$\$:n	●● @ 诊 广 ● ● @ 杏 · ● ● @ 答
rad1R399A R402A rad1D444A rad1K454A R456A			● ● ● ☆ * ● ● ● 孕 + • ● ● ● ● 辛 *

Figure S1.

Figure S2.

Relative amount of each protein in gel filtration load							
r/Rad1 Rad10 Saw1							
Rad1	29	18	53				
rad1R203A K205A	33	31	36				
rad1R218A	22	28	50				

В

Figure S3.

Α

Α

Β

Figure S5.

UV sensitivity ר 100 100 SAW1 HC 80-Empty Vector % Survival 60-%Survival 10-40-20-1+ 0 0 1301AD 20 **40** . 60 N UV exposure time (sec)

В

Figure S7.

Α

Pathway Summary

Allele	3' NHTR	NER	ICLR
RAD1	++	++	++
rad1R203A K205A	-	+	++
R218A	-	++	++
D825A	-	-	NT

In vitro Summary

Allele	DNAB	Endo	Saw1 Int.	Stable complex	2-3 Int.	2-3 int. + DNA	Saw1 Int. + 2-3	RPA Stim.
RAD1	++	++	++	++	++	++	++	++
rad1R203A K205A	+	+/-	+	-	+/-	NT	NT	NT
R218A	++	++	++	++	++	+++	+++	-
D825A*	++	-	NT	NT	NT	NT	NT	NT

In vivo Summary

Allele	SSA - short	SSA - Iong	ChIP	SSA + Saw1	SSA + 2-3	SSA + KKAA	SSA + Saw1 + Msh3	RPA Int.
RAD1	++	++	-	No change	\downarrow	\downarrow	No change	++
R218A	-	+	+/-	↑	\downarrow	No change	No change	-
D825A	-	NT	++	No change	NT	NT	NT	NT

Figure S8.